在 Kubernetes 中也有 schema 的概念,通过对 kubernetes 中资源(GVK)的规范定义、相互关系间的映射等,schema 即 k8s 资源对象元数据。
词起源于希腊语中的 form 或 figure,但具体应该如何定义 schema 取决于应用环境的上下文。schema 有不同的类型,其含义与数据科学、教育、营销和 SEO 以及心理学等领域密切相关。
在维基百科中将 schema 解释为,图式,在心理学中主要描述一种思维或行为类型,用来组织资讯的类别,以及资讯之间的关系。它也可以被描述为先入为主思想的心理结构,表示世界某些观点的框架,或是用于组织和感知新资讯的系统。
但在计算机中的 schema 其实与这个解释很接近了,从很多地方都可以看到 schema 这个名词,例如 database,openldap,programing language 等的。这里可以简单的把 _schema_ 理解为 元数据集合 (metadata component),主要包含元素及属性的声明,与其他数据结构组成。
数据库中的 schema
在数据库中,schema 就像一个骨架结构,代表整个数据库的逻辑视图。它设计了应用于特定数据库中数据的所有约束。当在数据建模时,就会产生一个 schema。在谈到关系数据库]和面向对象数据库时经常使用 schema。有时也指将结构或文本的描述。
数据库中 schema 描述数据的形状以及它与其他模型、表和库之间的关系。在这种情况下,数据库条目是 schema 的一个实例,包含 schema 中描述的所有属性。
数据库 schema 通常分为两类:定义数据文件实际存储方式的物理数据库 schema 和逻辑数据库 schema,它描述了应用于存储数据的所有逻辑约束,包括完整性、表和视图。常见包括
星型模式(star schema)
雪花模式(snowflake schema)
事实星座模型(fact constellation schema 或 galaxy schema)
星型模式是类似于一个简单的数据仓库图,包括一对多的事实表和维度表。它使用非规范化数据。
雪花模式是更为复杂的一种流行的数据库模式,在该模式下,维度表是规范化的,可以节省存储空间并最大限度地减少数据冗余。
事实星座模式远比星型模式和雪花模式复杂得多。它拥有多个共享多个维度表的事实表。
Kubernetes 中的 schema
通过上面的阐述,大概上可以明白 schema 究竟是什么东西了,在 Kubernetes 中也有 schema 的概念,通过对 kubernetes 中资源(GVK)的规范定义、相互关系间的映射等,schema 即 k8s 资源对象元数据。
而 kubernetes 中资源对象即 Group Version Kind 这些被定义在 staging/src/k8s.io/api/type.go 中,即平时所操作的 yaml 文件,例如
复制
1. apiVersion: apps/v1
2. kind: Deployment
3. metadata:
4. name: ngx
5. namespace: default
6. spec:
7. selector:
8. matchLabels:
9. app: ngx
10. template:
11. metadata:
12. labels:
13. app: nginx
14. spec:
15. containers:
16. - name: ngx-schema
17. image: nginx
18. ports:
19. - containerPort: 80
而对应的的即为 TypeMeta 、ObjectMeta 和 DeploymentSpec,TypeMeta 为 kind 与 apiserver,ObjectMeta 为 Name 、Namespace CreationTimestamp 等段。
DeploymentSpec 则对应了 yaml 中的 spec。
而整个 yaml 组成了 一个 k8s 的资源对象。
复制
1. type Deployment struct {
2. metav1.TypeMeta `json:",inline"`
3. // Standard object metadata.
4. // +optional
5. metav1.ObjectMeta `json:"metadata,omitempty" protobuf:"bytes,1,opt,name=metadata"`
6.
7. // Specification of the desired behavior of the Deployment.
8. // +optional
9. Spec DeploymentSpec `json:"spec,omitempty" protobuf:"bytes,2,opt,name=spec"`
10.
11. // Most recently observed status of the Deployment.
12. // +optional
13. Status DeploymentStatus `json:"status,omitempty" protobuf:"bytes,3,opt,name=status"`
14. }1.2.3.4.5.6.7.8.9.10.11.12.13.14.
register.go 则是将对应的资源类型注册到 schema 中的类
复制
1. var (
2. // TODO: move SchemeBuilder with zz_generated.deepcopy.go to k8s.io/api.
3. // localSchemeBuilder and AddToScheme will stay in k8s.io/kubernetes.
4. SchemeBuilder = runtime.NewSchemeBuilder(addKnownTypes)
5. localSchemeBuilder = &SchemeBuilder
6. AddToScheme = localSchemeBuilder.AddToScheme
7. )
8.
9. // Adds the list of known types to the given scheme.
10. func addKnownTypes(scheme *runtime.Scheme) error {
11. scheme.AddKnownTypes(SchemeGroupVersion,
12. &Deployment{},
13. &DeploymentList{},
14. &StatefulSet{},
15. &StatefulSetList{},
16. &DaemonSet{},
17. &DaemonSetList{},
18. &ReplicaSet{},
19. &ReplicaSetList{},
20. &ControllerRevision{},
21. &ControllerRevisionList{},
22. )
23. metav1.AddToGroupVersion(scheme, SchemeGroupVersion)
24. return nil
25. }
而 apimachinery 包则是 schema 的实现,通过看其内容可以发现,kubernetes 中 schema 就是 GVK 的属性约束 与 GVR 之间的映射。
通过示例了解 schema
例如在 apps/v1/deployment 这个资源,在代码中表示 k8s.io/api/apps/v1/types.go ,如果需要对其资源进行扩展那么需要怎么做?如,建立一个 StateDeplyment 资源
复制
1. type Deployment struct {
2. metav1.TypeMeta `json:",inline"`
3. // Standard object metadata.
4. // +optional
5. metav1.ObjectMeta `json:"metadata,omitempty" protobuf:"bytes,1,opt,name=metadata"`
如上述代码所示,Deployment 中的 metav1.TypeMeta 和 metav1.ObjectMeta
那么我们复制一个 Deployment 为 StateDeployment,注意,因为 Deployment 的两个属性, metav1.TypeMeta 和 metav1.ObjectMeta 分别实现了不同的方法,如图所示
8所以在实现方法时,需要实现 DeepCopyinfo , DeepCopy 和继承接口 Object 的 DeepCopyObject 方法
复制
1. // DeepCopyInto is an autogenerated deepcopy function, copying the receiver, writing into out. in must be non-nil.
2. func (in *StateDeployment) DeepCopyInto(out *StateDeployment) {
3. *out = *in
4. out.TypeMeta = in.TypeMeta
5. in.ObjectMeta.DeepCopyInto(&out.ObjectMeta)
6. in.Spec.DeepCopyInto(&out.Spec)
7. in.Status.DeepCopyInto(&out.Status)
8. return
9. }
10.
11. // DeepCopy is an autogenerated deepcopy function, copying the receiver, creating a new StateDeployment.
12. func (in *StateDeployment) DeepCopy() *StateDeployment {
13. if in == nil {
14. return nil
15. }
16. out := new(StateDeployment)
17. in.DeepCopyInto(out)
18. return out
19. }
20.
21. // DeepCopyObject is an autogenerated deepcopy function, copying the receiver, creating a new runtime.Object.
22. func (in *StateDeployment) DeepCopyObject() runtime.Object {
23. if c := in.DeepCopy(); c != nil {
24. return c
25. }
26. return nil
27. }
那么扩展一个资源的整个流为:
资源类型在:k8s.io/api/{Group}/types.go
资料类型的实现接口k8s.io/apimachinery/pkg/runtime/interfaces.go.Object
其中是基于Deployment 的类型,metav1.TypeMeta 和metav1.ObjectMeta
metav1.TypeMeta 实现了GetObjectKind() ;metav1.ObjectMeta 实现了DeepCopyinfo=(),DeepCopy() ,还需要实现DeepCopyObject()
最后注册资源到 schema 中k8s.io/api/apps/v1/register.go
>>>>>>点击进入系统运维专题
¥10500.00
¥1888.00
¥499.00
¥49.00
¥5999.00